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ring on the one hand, and the amine group (Nls) and 
the two methyl groups of the triazine ring on the other 
hand. The interatomic distances Ca-C10, C5-Cll and 
C5-1q15 are 2.93, 2-93 and 2.71 J~ respectively. 
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Fig. 4. Projection of the structure of the hydroohloride on 
(001), showing the environment of the chlorine ion. 

The arrangement of the molecules in the unit cell 
is shown in Fig. 4. In a structure of this type there 
are two main requirements to be satisfied: the ar- 
rangement of the amino groups close to the C1- 
(or Br-) ions, and the economical packing of the large 
organic ions. In the present structure each chlorine ion 
is in contact with three amino groups at 3.24, 3.19 

and 3.27 J~ respectively, and also with N14 and C a in 
the triazine ring at 2.98 and 3.22/~ respectively (Fig. 4). 
Thus N15 is in contact with one chlorine ion at 3.27 A; 
Nle is in contact with two chlorine ions at 3-19 and 
3.24 A. These distances agree well with those of 3-10, 
3.22 and 3.26 /~ in m-tohdine (Fowweather & Har- 
greaves, 1950); 3.17 and 3.24/~ in geranylamine hydro- 
chloride (Jeffrey, 1945) ; and 3.24/~ in glycyl-L-tyrosine 
hydrochloride (Smits & Wiebenga, 1953). The N14-C1 
distance of 2.98 A may be compared with 3.11 J~ for 
a similar contact in adenine hydrochloride (Broom- 
head, 1948). The next nearest neighbours of the chlo- 
rine ion are the two methyl groups at 3.9/~ and 4-3 J~, 
and the atoms of the two adjacent benzene rings in 
the range 4.0-4.5 /~. 
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Solution of the Phase Problem for Space Group PI 

BY H. HiUPTMAN AND J. KARLE 

Naval Research Laboratory, Washington, D.C., U.S.A. 

(Received 1 September 1953) 

A routine procedure which does not require previous knowledge of any signs has been developed 
for determining the signs of the structure factors for space group P1. Only the magnitudes of the 
structure factors and the chemical composition of the crystal need to be known. The method devel- 
oped here is readily extended to all the centrosymmetric space groups, and the general treatment 
may be found in A.C.A. Monograph No. 3. 

Introduct ion 

The probability distribution PI(A) of a structure 
factor for any centrosymmetric crystal is an even 
function of A provided that  the atoms in the crystal 
are assumed to occupy all positions with equal pro- 
bability (Karle & Hauptman, 1953, eq. 20). Thus, the 
structure factor is just as likely to be positive as 
negative, even though its magnitude may be known. 
However, once a set of X-ray intensities is known, 
the atoms in a crystal no longer occupy all positions 

with equal probability. If the atoms are assumed to 
range at random in the unit cell subject to the con- 
straints imposed by the knowledge of a set of intensi- 
ties, the resulting probability distribution of a structure 
factor is no longer an even function. The probability 
that  the structure factor has a particular sign is now 
different from one-half. The purpose of this paper is 
to derive these probabilities on the basis that  certain 
sets of intensities are specified and to derive there- 
from a procedure for phase determination for space 
group P1. 

A C 7  24 
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The program carried out in this paper is the cul- 
mination of ideas described in three previous articles 
(Karle & Hauptman,  1953; Hauptman & Karle, 1952, 
1953a) and was formulated in the last one. The details 
for all centrosymmetric space groups are described in 
the A.C.A. Monograph No. 3 (Hauptman & Karle, 
1953b). 

F o r m u l a t i o n  

Since the joint probabili ty distribution of the structure 
factors leads to a practical solution of the phase 
problem, it is appropriate to formulate this problem 
in a precise fashion. The structure factors are defined 
by means of 

N/n 

F h = ~ fih~(Xi, yj, zi, h) (I) 
:=I 

summed over all atoms in the asymmetric unit, where 
n is the symmetry  number, f ~  is the atomic scattering 
factor, N is the number of atoms in the unit cell, and 
~ / =  ~ (x/, y# z# h) is some known trigonometric 
function of h and the atomic coordinates xp y~, zj, 
which depends on the space group, e.g. ~i = 2 cos 
2r~(hxj+lcyj+lz/) for space group P1. The phase prob- 
lem is the problem of determining the phases (either 
0 or ~) of the structure factors Fh, given the magni- 
tudes of F h  and the values of f ~  for a sufficiently 
large number of vectors h. 

The crystal structure alone does not, however, deter- 
mine all the phases, because (1) implies tha t  an appro- 
priate origin has been selected. In  fact the values of 
the atomic coordinates x i, yj, zj depend upon the 
choice of origin. We restrict at tention to space group 
P1 and to crystals having atoms only in general po- 
sitions. Since eight origins are permissible (permissible 
in tha t  they  are centers of symmetry),  the phase of a 
structure factor depends not only on the structure 
but  also on the choice of origin. I t  will be seen tha t  
the origin may  be conveniently chosen by specifying 
arbitrarily the phases of a suitable set of three struc- 
ture factors. All phases are then determined. 

If the origin is shifted to the new center having 
coordinates el, e2, e3 with respect to the first origin, 
where ei = 0 or ½, i = 1, 2, 3, then Fh of (1) is replaced 
by Fh cos 2~(hel+ke~÷le3). Thus it is seen tha t  the 
phase q0n of the structure factor Fh has the same value 
for all eight permissible origins if, and only if, each of 
h~ k, t is even. The sign of such a structure factor is 
determined by the crystal structure alone and is inde- 
pendent of the choice of origin. The sign of any struc- 
ture factor Fn 1 with h 1 odd, and k 1 and 11 even may  be 
specified arbitrarily. However, once this is done, then 
the signs of all other structure factors Fh with h odd 
and k and 1 even are determined by the crystal struc- 
ture. Similarly, the sign of any structure factor Fh2 
with h, even, k 2 odd, and l 2 even may be specified 
arbitrarily. However, once this is done, then the signs 
of all other structure factors Fh with h even, k odd, 

and l even are determined by  the crystal structure. 
Furthermore, the signs of all structure factors Fh with 
h odd, k odd, and 1 even are also determined, as a 
consequence of specifying the signs of Fhl and Fhr  
Finally, the sign of any structure factor Fha, with h a 
even,/c a even, and 13 odd may  be specified arbitrarily. 
Then the signs of all other structure factors Fh with 
h even, k even, and 1 odd are determined. Further- 
more, the chosen signs for Fhl and Fh3 determine the 
signs of all structure factors Fh with h odd, k even, 
and I odd; and the chosen signs for Fh2 and Fh3 deter- 
mine the signs of all structure factors Fh with h even, 
k odd, and 1 odd. Finally the signs of all structure 
factors Fh with h, k, and 1 all odd are also determined, 
as a consequence of specifying the signs of Fhl, Fh2, 
and Fh 3. 

While the previous paragraph illustrates a particu- 
lar way of selecting the origin, there are many  other 
sets of three structure factors whose phases may  be 
arbitrarily specified. In order to t reat  this problem in 
general it is convenient to introduce the concepts of 
linear dependence and independence modulo 2. 

First the concept of linear dependence modulo 2 is 
introduced. As is well known, if the integer h is even, 
h is said to be congruent to zero modulo 2, and we 
write 

h ~ 0 (mod 2).  (2) 

Similarly we say tha t  the vector h = (hi, h2, . . . ,  hp), 
where hi, h2 . . . .  , hp are integers, is even if each of 
h 1, h , , . . . ,  hp is even, and we write 

h ~ 0 (rood 2) .  (3) 

Two vectors h 1 and h, are congruent modulo 2 if the 
difference h l - h ~  is even; and the notation 

h I ~ h~ (rood 2) (4) 

is used. A set of n vectors h~, i = 1, 2, . . . ,  n is said 
to be linearly dependent modulo 2 if there exists a 
set of n integers a i = 0 or 1, i = 1, 2, . . . ,  n, not all 
of which are zero, such tha t  

a~h~ -- 0 (mod 2). (5) 
i = 1  

Otherwise the set hi is said to be linearly independent 
modulo 2. Finally the vector h is linearly dependent 
modulo 2 on, or linearly independent modulo 2 of, 

the se~ ~,  ~ = 1, 2, . . . ,  n, according as there exist or 
there do not exist n integers a~ = 0 or 1 such tha t  

h - ~ a,h i (mod 2). (6) 
i=1 

For example (242) is linearly dependent modulo 2. 
Again, (124) is linearly dependent modulo 2 on (346) 
but  is linearly independent modulo 2 of the pair (234), 
(465). Evidently (100), (010), (001) constitute a set 
of three vectors which are linearly independent too- 
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dulo 2. Any set of four vectors, however, each having 
three components, is linearly dependent modulo 2. 

This discussion leads to the following definition: 
Definition.---A set of phases q~  is said to be linearly 
dependent or independent modulo 2 according as the 
set of vectors hi is linearly dependent or independent 
modulo 2. The phase 7~ is linearly dependent modulo 
2 on, or linearly independent modulo 2 of, the set of 
phases q~  according as the vector h is linearly de- 
pendent modulo 2 on, or linearly independent modulo 
2 of, the set of vectors hi. 

I t  is now possible to summarize in simple terms the 
dependence of phase on choice of origin. In a given 
crystal any phase which is linearly dependent modulo 
2 is determined by the crystal structure (and is thus 
independent of the choice of the origin, which is of 
course always assumed to be at a center of symmetry). 
In  a given crys ta lany phase (0 or g)which is linearly 
independent modulo 2 may be specified arbitrarily. 
However, once such a phase, 7~,  has been specified, 
then any phase, which is linearly dependent modulo 
2 on ~n~, is determined by the crystal structure. In 
a given crystal, any two phases which are linearly 
independent modulo 2 may be specified arbitrarily. 
However, once such phases, ~n~ and ~h,, have been 
specified, then any phase, which is linearly dependent 
modulo 2 on t h e  pair ~n~, ~n~ is determined by the 
crystal structure. In  a given crystal, any three phases 
which are linearly independent modulo 2 may be spe- 
cified arbitrarily. However, once such phases have 
been specified, then any phase is determined by the 
crystal structure. 

Joint distribution 

As has been observed previously (Hauptman & Karle, 
1953a) the concept of the joint or compound prob- 
ability distribution appears to be particularly use- 
ful in problems involving probabilities of dependent 
events; for the probability distribution of a structure 
factor, when certain magnitudes or phases are speci- 
fied, is readily derivable from the joint distribution. 
The structure factor for the centrosymmetric crystal 
is given by (1). Denote by p(~l ,  . . . ,  ~jm)d~i~ . . .  
d~m the joint probability that  ~i~ lie in the interval 
~ ,  ~ + d ~ ,  for/~ = 1, 2 . . . .  , m, where 

~i~ = ~(x~, y# z# h,) (7) 

and m is any positive integer. Let P ~ ( A ~ , . . . ,  
Am)dA~. . .  dam be the joint probability that  lv~, lie in 
the interval A~,, A~,+dA~,,/~ = 1, 2, . . . ,  m. We~prove 
next the fundamental result 

P , ( A , , . .  A m ) = - -  1 l°° . . S  °° 
"' (2~) m _~"  _ ~  (8) 

m NIn 

x exp ( -  i ~Y, A~,w~,) H q(f#w~, . . . ,  fimwm) dw~ . . .  dwm, 
~=~ i=~ 

where 

f S\, q(fslwl, . . . , f jmwm) ---- . .  (~#, ' '  ", ~jm) 

m 

x exp (iSf#,~#,w,,)d~j~ . . .  d ~ i , n ,  (9) 
/~=1 

and 
fs. = f # . ,  k,,, z.) = / j (h . )  (10) 

is the atomic scattering factor of the j th  atom. 
The probability, Q(A1 , . . . ,  Am) that  zvh u be less 

than A u for every/~ = 1, 2, . . . ,  m is 

S S Q(A~, . . . ,  Am) = -oo""  -oo (11) 
N/n  m 

×//(P(~jl ,  " ' ' ,  ~jm)d~jl "'" d~im) I I T  (~l/z, " ' ' ,  ~(,V/n)l~) ' 
i=1  /*=1 

where 

T ( ~ , ,  . . . ,  ~(.~/n)A 
1 1 ~,oo exp [i(F~,-Ai,)w~,]dw ~, 

7 
2 2~ ~._oo ~W~ 

(12) 
= 1 if F ~ , < A ~ , ,  

= 0  if Fh~,> A~,. 

By differentiating (11) successively with respect to 
A 1 , . . . ,  Am, we obtain (8) and (9) since 

~mQ(Ax, . . . , A m )  
PI(Ax, . . . ,  Am) = ~A~ . . .  ~Am (13) 

Probability distributions for F 

Equations (8) and (9) are the starting point from 
which the probability distributions for the structure 
factors may be derived on the basis that  certain sets 
of magnitudes or phases are known. As in the deriva- 
tion of (8), the atoms are assumed to range at random 
throughout the asymmetric unit except in so far as 
they are restricted by a knowledge of the magnitudes 
or the phases of a specified set of structure factors. 
The formulas to be derived are of two types, those 
requiring a knowledge of intensities only, and others 
requiring a knowledge of the phases also. 

The method used for evaluating (8) and (9) is the 
same in all cases and is illustrated for the simplest 
case, namely when m = 2. Using the Maclaurin ex- 
pansion of the exponential, (9) now reduces to 

q(f  l Wl, f j2w2) = S_~ S_~ "( ~jl, ~i2)d~jl d~i2 

1 

i 
~! (fjl~ilwl+fj2~j2w2) 3 + . . . .  }. (14) 

The notation 

(15) 

24* 
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PI(A1, A2) ---- 

is introduced. Interpreting (15) as an expected value, 
or average, of ~ ] ~  we infer tha t  

I 1 f 1 1 i ~i.(X, Y, z, hi)~z(x, y,z ,  h2)dxdydz. (16) 
r f f ~  0 0 0 

The importance of (16) is due to the fact tha t  in 
evaluating q from (14) it  is not  necessary to have an 
explicit expression for p(~/i, ~/2). I t  is sufficient to 
evaluate the moments m~ in (16), a relatively simple 
mat ter  once the functions ~i~ and ~i~ have been given. 

We consider in detail only the space group P1, 
so tha t  

~s  = 2 cos 2z  (h~,x + k~,y + l~,z) , (17) 

but  i t  is obvious tha t  the same methods apply to any 
eentrosymmetric space group. Since m0 i = ml0 = m03 
= m~ = 0, m n = 0 if h i #= h 2, m0~ = m~0 = 2, and not 
both  of ml~, m~i are different from zero so tha t  we 
may  assume m2i = 0, equation (14) reduces to 

q(f w. f 
2 2 (¢/2)fllf~2wlw~m~2_ t_ . . . .  (18) 

Thus 

b g / 1  qIA,  = 
j=l 

!v/~ iv/~ -,v/~ 
w ~  ~ # z  w ~ 2 • w ~ 2 _  2A -(q2)wl (19) 
• i=1 j=l j-~l 

and • 

.,,v/~ ~V/2 Xl~ 
1I qff#wl, fi2w2) exp 2 2 
----1 i----I i---I 

iv/2 

x { 1 - ( i / 2 ) w l w ~ m l ~ 2 f , . x , f i ~ + .  . . }  . (20) 
~=1 

exp 

/ iv N \½ 
2 2 ) 

I 
A1.,Ef~lf~ A 2 

~=1 -I x 1+ 7 -  ~ -T ~2 
2__~/2 ~ ~ ~ f 2  

~1 .~=if~ \~=i 

Substi tut ing from (20) into (8) we obtain 

exp 

PI(A1, Az) -~ 

×{l÷ 
I Iv ~v \ ~  

2 2 2"I,~f/i,~=J'2 ) 

. tl 
A " " 2  1..~f#f,2 ( : 

. 1 
~V N 

:j--=l 

(21) 

where j now ranges over all N atoms in the unit ceil. 
For Fn~ = A~, (21) yields the probabili ty distribution 
for Phi. However, unless hi = 2h~, we have ml~ = 0 
and, to the approximation involved, (21) is an even 
function of A~ and therefore yields no information 
concerning the sign of Fnr  Therefore let h i = 2h~. 
Then nh~ = 2 and (21) becomes 

, ( 2 2 )  

which (except for a normalizing factor) is the  proba- 
bility distribution for Fhl after it is known tha t  the 
intensity IFn21 is equal to A~, provided that  h i = 2h~. 
I t  is to be emphasized tha t  since (22) is not an even 
function of A1 information concerning the sign of Fhl 
is now available. In  fact the probabili ty tha t  Fnl be 
positive, once the values of ].Fhl ] and ]Fh21 are known, 
is readily derivable from (22) and will be obtained 
later, 

Next  we define the normalized structure factor by  
means of 

Eh ~ F h / ( j ~ / ~ )  ½ , (23) 

so tha t  Eh and Fh have the same sign. Since the aver- 
age value of l ~  n is given by  

iv 

j--i 

(p = 2 in equation (23) of Karle & Hauptman,  1953), 
(23) implies 

<ED = 1. (25) 

The probabili ty distributions are considerably sim- 
plified when referred to the normalized structure fac- 
tors rather  than  the structure factors themselves, 
and they  will be used exclusively in this form from 
now on. Equat ion (22) then becomes 

exp 
P(E1, E2) = 2z 

x 1 +  / s  ~/~ iv ~. E t ( E  ~ - 1 )  , (26) 

2 /~i f~l  ) ( ~ i f '  u) 

where P(E1, E )dEldE  is the probability that both 
Ehl lie between E 1 and .El+dE i and Eh~ lie between 
E~ and E2+dF-,~. Except for a normalizing factor 
(Uspensky, 1937, p. 31), (26) is the probabili ty distri- 
bution for Ehl after it is known tha t  E ~  is equal to 
E~ (always under the condition h i = 2h~). I t  is to be 
emphasized that,  since (26) is not an even function of E 1, 
information concerning the sign of Ehl is now avail- 
able. In  fact the probability tha t  Ehl be positive, once 
the values of [Eht[ and [Eh~] are known, is readily 
derivable from (26) and will be obtained later. 
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Equation (26) is the first of a long series of s imilar  
expressions obtained from (8) by letting m = 2, 3, 
4, . . . ,  assuming suitable linear relationships among 
the vectors hi, h~, . . . ,  h~, and taking as many terms 
in the Maclaurin expansion of the exponential in (9) 
as are needed to obtain significant results. Since the 
procedure is the same as in the derivation of (26) we 
write here only one more typical formula without 
proof: 

P(EI, E~, E3) 
= exp (-½E~-½E~2-½E~)(1 +pl(E~, E~, E~) 

+ 4-"  (Z~1)1/2 (Z~)(Xf~.3) (E~-I )  (E~-I)} ,  

h 1 ~- + 2 h 2 + 2 h  3, (27) 

where j ranges from 1 to N and Pl is a symmetric 
polynomial in E~, E~, E~ the exact form of which 
is unimportant since it does not appear in the final 
formulas for phase determination. 

P r o b a b i l i t i e s  for the s i g n  of F 

From the joint probability distributions for certain 
sets of normalized structure factors, the probability 
that  the sign of a structure factor be plus, on the basis 
that  certain magnitudes or phases are known, may 
be inferred. Denote by P+(F) the probability that  the 
sign of F be plus. Then, using P+(F)+P_(F) = 1 or 
P+(F) = (P+/P_)/(1 +(P+/P_)), we find from (27) 

P+ (Fh) 
= 

2 2 

2 1/2 2 2 [Eh](Eh~-- ( E ~ - I ) ,  
(ZI~) (Hf~)(Hf~%) (28) 

h -- + 2h~ + 2h~, 

where P+(Fh) is the probability that  2'h be positive 
once the magnitudes of Eh, Eu., and Eh. are known. 
A special significance is to be attached "to (28) since 
it is the probability that  a structure factor be positive 
on the basis that  the magnitudes only (and not the 
signs) of a certain set of structure factors are known. 
Hence (28) forms the starting point of the procedure 
for phase determination to be described. 

Equation (28) is an expression which in general 
differs only slightly from ½. In order to become an 
effective tool for phase determination this formula 
must be modified somewhat so as to take into account 
a large number of observed magnitudes. This is readily 
done by making use of joint probability distributions 
of large numbers of structure factors. We conclude 
from (28) that  the sign of Fh, where h is even, is the 
same as the sign of 

2 2 

Zf,~f~,f':~, (E~ --1)(E~ --1) (29) 
2 1/2 -~ 2 2 

A great simplification of the formulas used in the 

procedure for sign determination may be realized if 
we use the relationship 

f ~a = Zjfh , (30) 

where Z / i s  the atomic number of the j th  atom and 
fh is a function of h which is assumed to be the same 
for all atoms present• Then (29), for example, redu- 
ces to 

2 z [  
J 

2 !)(E~ - 1 ) .  (31) ~7 (Eh~-- (2 
J 

P r o c e d u r e  for  p h a s e  d e t e r m i n a t i o n  

I t  is assumed that  the magnitudes [F] of the struc- 
ture factors have been adjusted to an absolute scale 
and for vibrational motion, e.g. by means of well 
known averaging procedures (Wilson, 1949). Then the 
'normalized' structure-factor magnitudes ]E[ may be 
readily computed from (23). The sign of any E is 
seen from (23) to be the same as that  of its corres- 
ponding F. The E's  are arranged in decreasing order 
and their signs (within each step) will be generally 
determined in this order. 

Step 1.--We determine the signs of all structure 
factors whose phases are linearly dependent modulo 
2. The sign of En, where h is even, is the sign of 

where*t$ 

z1 

(32) 

4(ZZ~) 3/2 ~v (E~-  1), (33) 
h = 2h/z 

_ 

Z u 2(~a/2h=h2~E~,E,, (34) 

ZZ~ _ (35) 

zz . _ 
X ,  8(~)j)5/2h=2~:2 (E~-l)(E~-l) .  (36) 

Since, initially, only the magnitudes of the E 's  are 
known, only Z71 (which contains only one summand) 
and H 4 can contribute to • in (32). However, as soon 
as a few signs become available, Z3 begins to play 
a role and, as more and more signs become known, 
H 2 plays more and more important a role. 

Step 2.--We specify arbitrarily the sign of the 
largest normalized structure factor Ehl, whose phase 
~0hl is linearly independent modulo 2, and then deter- 

* For convenience, the subsciipt h is suppressed when 
there is no danger of ambiguity, e.g. Eh~ is replaced by 

etc. 
E~f, Equation (33) may be compared with the Harker-Kasper 
(1948) inequality (8). 

Equation (34) should be compared to equation (1.3) of 
Sayre (1952), equation (8) of Zaehariasen (1952), or equation 
(18) of Cochran (1952), and to the inequality (34) of Karlo 
& Hauptman (1950). 
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mine the signs of all structure factors Fh, where ~h 
is linearly dependent modulo 2 on ~hl. This is accom- 
plished by'using the results of Step 1. Let h,l ~ h 1 
(mod 2). The sign of Eh, where both h±h~, are even 
is the sign of 

Z ' =  Z z + ~ 3 + Z s + Z e + Z  ~ , (37) 

where Z 2 is given by (34) and 

4 X z j  _ 
Z3 ~ 2." 2 , h~:l~ =21 ~,,(E~ - 1 ) (38) 4(Xzj) 

2z . 
• ~6 - 2(XZ~)~h+~=h,~±hE~E~,E~,_ ~ (39) 

Z ,  -- 4 (ZZ~)5 /2h~  ffi~h~2h E,  E~,(E~-- l ) . (40) 

Z ,  = ~ ,~ '~ ,3  2 E , , ( E 2 - 1 ) ( E 2 - 1 ) .  
o~..~/-~]] h±hv =2h/~ 2h~ (41) 

At first only ~ , - ~ , - ~ a  and ~v are important 
contributors to X' in (37), and in computing ~ and 
~ use is made of the known signs obtained from 
Step 1. However, as soon as a few signs are found 
~5 becomes more important and as more and more 
signs become known ~2 again plays the dominant role. 

Step 3.--We specify arbitrarily the sign of the 
largest normalized structure factor Eh2, whose phase 
~h2 is linearly independent modulo 2 of ~n~, and then 
determine the signs of all structure factors Fh whose 
phases ~h are linearly dependent modulo 2 on Fh2. 
This is accomplished as in Step 2, but h 2 replaces h~. 

Step 4.--We specify arbitrarily the sign of the 
largest normalized structure factor End, whose phase 
~h3 is linearly independent modulo 2 of the pair ~h~, 
~h2, and then determine the signs of all structure 
factors Fn whose phases are linearly dependent mo- 
dulo 2 on ~h a. This is accomplished as in Step 2, but 
h 3 replaces h~. 

Step 5. We determine the signs of all structure 
factors Fh whose phases are linearly dependent mo- 
dulo 2 on the pair ~n~, ~h~. This is accomplished by 
using the results of Steps 1, 2, 3. Let h = h~, h~ = h 2 
(rood 2). The sign of F~, where h+h, ,±h, ,  are all even, 
is the sign of 

Z " =  Z ~ + Z ; ,  (42) 
where 

At first the results of Steps 2 and 3 are mainly used, 

but as more signs are obtained, the results of Step 1 
are used more and more. 

Step 6.--We determine the signs of all structure 
factors Fh whose phases are linearly dependent mo- 
dulo 2 on the pair ~hl, Ch~- This is done as in Step 5 
using the results of Steps 1, 2, 4. 

Step 7.--We determine the signs of all structure 
factors Fh whose phases are linearly dependent mo- 
dulo 2 on the pair ~2,  7~3. This is done as in Step 5 
using the results of Steps 1, 3, 4. 

Step 8.--The signs of all remaining structure fac- 
tors Fh are determined. This is accomplished by using 
the results of Steps 1-7. The sign of Fh is the sign of 

Concluding remarks 

The solution of the phase problem described here 
provides a routine and practical method for phase 
determination for space group P1. In  the Monograph 
the solution for all centrosymmetric space groups is 
described. The procedure is readily adapted for IBM 
techniques. Only a knowledge of a sufficient number 
of X-ray intensities and of the chemical composition 
of the crystal is required. 

The Monograph treats crystals having atoms in 
special as well as in general positions. Confirmation 
of the theory is obtained in several ways. The pro- 
bability theory leads in a non-trivial way to the same 
dependence between the sign of a structure factor and 
the choice of origin as is obtained from an independent 
analysis. In  a numerical example, 38 out of 40 signs 
were obtained correctly by the use of only a few of 
the simpler relationships obtained from the probabi- 
lity theory. Some of the formulas were qualitatively 
confirmed by means of a geometric interpretation. 
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